

A053203


Pascal's triangle (excluding first, last three elements of each row) read by rows, row n read mod n.


5



2, 0, 0, 0, 6, 0, 3, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, 2, 7, 0, 7, 0, 5, 0, 3, 10, 0, 0, 10, 3, 0, 5, 0, 12, 0, 8, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, 2, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

6,1


COMMENTS

Prime numbered rows contain all zeros.


LINKS

T. D. Noe, Rows n=6..100 of triangle, flattened


EXAMPLE

Triangle begins:
2;
0,0;
0,6,0;
3,0,0,3;
0,0,2,0,0;
...
row 9 = 84 mod 9, 126 mod 9, 126 mod 9, 84 mod 9, = 3, 0, 0, 3.


MATHEMATICA

Table[Mod[Binomial[n, k], n], {n, 6, 20}, {k, 3, n3}] // Flatten (* JeanFrançois Alcover, Jan 17 2014 *)


PROG

(Haskell)
a053203 n k = a053203_tabl !! (n  6) !! k
a053203_row n = a053203_tabl !! (n  6)
a053203_tabl = zipWith (\k row > take (k  5) $ drop 3 row)
[6..] $ drop 6 a053200_tabl
 Reinhard Zumkeller, Jan 24 2014


CROSSREFS

Row sums give A053206.
Cf. A053200, A053201, A053203, A007318 (Pascal's triangle).
Sequence in context: A339016 A262679 A326390 * A158360 A309746 A094315
Adjacent sequences: A053200 A053201 A053202 * A053204 A053205 A053206


KEYWORD

nonn,nice,tabl


AUTHOR

Asher Auel (asher.auel(AT)reed.edu), Dec 12 1999


EXTENSIONS

a(30) corrected by T. D. Noe, Feb 08 2008


STATUS

approved



